Pacific Electric Wire & Cable (Shenzhen) Co., Ltd. enamel-wire.com

Enameled Copper Clad Wire Supplies With High Breakdown Voltage Advantage

Basic Information

• Place of Origin: China PEWSC • Brand Name: UL · Certification:

• Model Number: UEHN/U0 • Minimum Order 300KG

Quantity:

• Price: It depends · Packaging Details: Carton

• Delivery Time: 3-5 work days • Payment Terms: Cash on payments

· Supply Ability: Delivery 10-15 Days after Next Order

Product Specification

• Conductor: Oxygen Free Copper

• Delivery: Timely Delivery Guaranted

• Application: Electrical And Electronic Equipment

High Breakdown Voltage • Advantage:

• Temperature Rating: 180°C

• Insulation Thickness: 0.01mm-0.5mm • Feature: **Factory Supplies** • Usage: Winding Wire

• Highlight: **Enameled Copper Clad Wire Supplies,**

Enameled Copper Clad Wire,

High Breakdown Voltage Enameled Copper Wire

More Images

Product Description

Product Description:

The Enamelled Round Copper Wire is a high-quality product designed for various electrical and electronic applications. This wire is made of oxygen-free copper, ensuring excellent conductivity and durability. With a temperature rating of 180°C, it is suitable for use in a wide range of environments and applications.

One of the key features of this product is its factory supplies, guaranteeing consistent quality and availability. Whether for industrial or commercial purposes, this wire is a reliable choice for your electrical and electronic equipment needs.

The conductor resistance of the Enamelled Round Copper Wire depends on its size and temperature. This attribute makes it versatile and adaptable to different requirements, providing flexibility in various installations and setups.

When compared to Copper Clad Steel Wire, Copper Coated Steel Wire, and Copper Clad Wire, the Enamelled Round Copper Wire stands out for its superior conductivity and performance. Its pure copper construction ensures minimal signal loss and maximum efficiency in electrical transmission.

For electrical and electronic equipment applications, the Enamelled Round Copper Wire is a top choice due to its reliable performance, high temperature rating, and excellent conductor material. Whether you are working on power distribution systems, transformers, motors, or other electronic devices, this wire provides the conductivity and durability you need for a successful operation.

Overall, the Enamelled Round Copper Wire is a dependable and efficient solution for your wiring needs. With its oxygen-free copper conductor, factory supplies, and temperature rating of 180°C, this wire offers a reliable and high-performance option for various electrical and electronic applications.

Features:

Product Name: Enamelled Round Copper Wire

Usage: Winding Wire

Application: Electrical And Electronic Equipment

Insulation Thickness: 0.01mm-0.5mm

Temperature Rating: 180°C Conductor: Oxygen Free Copper

Technical Parameters:

Application	Electrical And Electronic Equipment
Advantage	High Breakdown Voltage
Conductor	Oxygen Free Copper
Delivery	Timely Delivery Guaranteed
Feature	Factory Supplies
Insulation Thickness	0.01mm-0.5mm
Conductor Resistance	Depends On Size And Temperature
Temperature Rating	180°C
Usage	Winding Wire

Applications:

Enamelled Round Copper Wire, also known as Enameled Copper Wire or Copper Coated Steel Wire, is a versatile and essential product used in various electrical and electronic applications. As a product of PEWSC, model number UEHN/U0, originating from China, and with UL certification, this wire offers high quality and reliability for a wide range of scenarios.

The product application occasions and scenarios for Enamelled Round Copper Wire are extensive due to its unique features and advantages. Its high breakdown voltage makes it ideal for use in electrical and electronic equipment where reliable insulation is crucial. The wire is commonly used as winding wire in transformers, motors, generators, and other electrical components.

With a minimum order quantity of 300KG, the Enamelled Round Copper Wire is suitable for both small-scale and large-scale projects. The pricing of the wire depends on the quantity ordered, offering flexibility for different budgets. The packaging details include carton boxes for safe and secure transportation.

Customers can expect timely delivery guaranteed within 3-5 work days, with payment terms set at cash on payments. The supply ability ensures that orders will be delivered within 10-15 days after the next order is placed, providing convenience and efficiency for businesses. One of the key advantages of using Enamelled Round Copper Wire is that it is factory supplied, ensuring consistent quality and performance. This makes it a preferred choice for manufacturers and industries that require high-quality materials for their products. In conclusion, Enamelled Round Copper Wire from PEWSC is a reliable and efficient solution for various electrical and electronic applications. Its high breakdown voltage, factory supply, and UL certification make it a preferred choice for winding wire in electrical and electronic equipment. Whether for small projects or large-scale production, this wire offers durability and performance for a wide range of scenarios.

JIS---0 Unit mm

Diam eter of Cond uct	Conducto r Control Benchma rks		OD Ben		ntrol narks	Specification Boundaries Coluct Res				Insul ation brea kdow	ga	in on atio %)	Max. Sprin	sta ce to ab	
	Low er Limi t	Upp er Limit	Lo wer Lim it	M e di a n	Upp er Limi t	Min.In crease in Diame ter (mm)	Max. Finish ed overall Diame ter (mm)	20	ance 20°C (Ω/KM)	n volta ge (v)	J I S	A W G	gines s (°)	A v e r a g e	M in i m u
0.06± 0.003		0.06	0.0 93	0. 0 9 8	0.10	0.030	0.110	69	66	2500	1	1 5			
0.07± 0.003		0.07	0.1	0. 1 0 8	0.11	0.030	0.120	49	90	2500	1	1 7			
0.08± 0.003		0.08	0.1 15	0. 1 2 0	0.12 5	0.032	0.133	37	78	3000	1 0	1 7			
0.09± 0.003		0.09	0.1 25	0. 1 3 0	0.13 5	0.032	0.143	29	59	3000	1 0	1 8			
0.10± 0.008		0.10	0.1	0. 1 3 9	0.14	0.032	0.156	26	47	3500	1 5	1 9			
0.11± 0.008		0.11	0.1	0. 1 4 9	0.15	0.032	0.166	21	53	3500	1 5	1 9			
0.12± 0.008		0.12	0.1 56	0. 1 6 1	0.16 6	0.034	0.180	17	86	3750	1 5	2			
0.13± 0.008		0.13	0.1 62	0. 1 7 1	0.17	0.034	0.190	15	05	3750	1 5	2			
0.14± 0.008	1	0.14	0.1 76	0. 1 8 1	0.18	0.034	0.200	12	86	3750	1 5	2			
0.15± 0.008		0.15	0.1	0. 1 9	0.19	0.034	0.210	11	11	3750	1 5	2			
0.16± 0.008	1	0.16	0.1 98	0. 2 0 3	0.20	0.036	0.222	96	9.5	3750	1 5	2			

0.17± 0.008	_	0.17	0.2 08	0. 2 1 3	0.21 8		0.036	0.232		853.5	3750	1 5	2			
0.18± 0.008		0.18	0.2	0. 2 2 5	0.23	F	0.038	0.246		757.2	3800	1 5	2			
0.19± 0.008	_	0.19	0.2	0. 2 3 5	0.24	-	0.038	0.256		676.2	3800	1 5	2			
0.20± 0.008		0.20	0.2 40	0. 2 4 5	0.25 0		0.038	0.266		607.6	3800	1 5	2			
0.21± 0.008		0.21 2	0.2 50	0. 2 5 5	0.26 0		0.038	0.276		549.0	3800	1	2			
0.22± 0.008		0.22 2	0.2 60	0. 2 6 5	0.27		0.038	0.286		498.4	3800	1	2			
0.23± 0.008		0.23 2	0.2 72	0. 2 7 7	0.28 2		0.040	0.298		454.5	3800	1 5	2 4			
0.24± 0.008		0.24	0.2 82	0. 2 8 7	0.29 2		0.040	0.308		416.2	3800	1 5	2 4			
0.25± 0.008		0.25 2	0.2 92	0. 2 9 7	0.30		0.040	0.318		382.5	3800	1 5	2 5	66		
0.26± 0.010		0.26	0.3	0. 3 0 7	0.31		0.040	0.330		358.4	3800	1 5	2 5	66	5 5 1	4 7 9
0.27± 0.010		0.27	0.3	0. 3 1 7	0.32		0.040	0.340		331.4	3800	1 5	2	61	5 5 1	4 7 9
0.28± 0.010		0.28	0.3	0. 3 2 7	0.33	-	0.040	0.350		307.3	3800	1 5	2	61	5 6 1	4 7 9
0.29± 0.010		0.29	0.3	0. 3 3 7	0.34		0.040	0.360		285.7	3800	2	2	61	5 6 1	4 9 0
0.30± 0.010	1	0.30	0.3	0. 3 4 9	0.35		0.042	0.374	1	262.9	4200	2	2	61	5 9 2	1

0.32± 0.010	0.3 16	0.32 2	0.3 64	0. 3 6 9	0.37 4	0.042	0.394		230.0	4200	2	2	55	6 0 2	5 1 0
0.35± 0.010	0.3 46	0.35	0.3	0. 3 9	0.40	0.042	0.424		191.2	4200	2	2 7	50	6 1 2	5 2 0
0.37± 0.010		0.37	0.4	0. 4 2 1	0.42 6	0.044	0.446		170.6	4200	2	2	50	6 4 3	5 5 1
0.40± 0.010	0.3 96	0.40	0.4	0. 4 5 4	0.46	0.046	0.480	-	145.3	4200	2	2	76	6 8 3	5 8 1
0.45± 0.010	0.4 45	0.45	0.5	0. 5 0 6	0.51	0.048	0.532	-	114.2	4200	2	2	72	7 2 4	6 2 2
0.50± 0.010	0.4 95	0.50	0.5 52	0. 5 5	0.56	0.050	0.586		91.43	4500	2	2	67	7 6 5	6 5 3
0.55± 0.020		0.55	0.6	0. 6 0 8	0.61	0.050	0.646	•	78.15	4500	2	2	62	7 7 5	6 6 3
0.60± 0.020	0.5 95	0.60	0.6 54	0. 6 6	0.66	0.052	0.698		65.26	4500	2	2	62	8 1 6	6 9 4
0.65± 0.020	1	0.65	0.7	0. 7 1 5	0.72	0.054	0.752		55.31	4500	2	2	58	8 5 7	7 3 4
0.70± 0.020	1	0.70	0.7 59	0. 7 6 7	0.77 5	0.056	0.804		47.47	4500	2		53	8 9 8	6
0.75± 0.020		0.75	0.8	0. 8 2 2	0.83	0.060	0.860		41.19	5100	2	3	53	9 7 9	8 2 6
0.80± 0.020		0.80	0.8 65	0. 8 7 4	0.88	0.062	0.914	•	36.08	5100	2 5	3	66	1 0 1 0	8 6 7
0.85± 0.020	1	0.85	0.9	0. 9 2 6	0.93 5	0.064	0.966	1	31.87	5100	2 5	I I	66	1 0 2 0	8 9 8
0.90± 0.020		0.90	0.9		0.98 7	0.066	1.020		28.35	5100	2	1 1	62	1 1 2 0	9 2 8

0.95± 0.020		0.95 3	1.0 21	1. 0 3 1	1.04 1	0.068	1.072	25.38	5100	2 5	3	62	1 1 2 0	9 6 9
1.00± 0.030	0.9 94	1.00	1.0 75	1. 0 8 5	1.09 5	0.072	1.138	23.33	5100	2 5	3 2	58	1 2 2 0	1 0 2 0
1.10± 0.030	1.0 93	1.10	1.1	1. 1 9 0	1.20	0.074	1.242	19.17	5900	2 5	3 2	54	1 2 2 0	1 0 2 0
1.20± 0.030	1.1 93	1.20	1.2 79	1. 2 9	1.30	0.074	1.342	16.04	5900	2 5	3 2	54	1 3 3 0	1 1 2 0
1.30± 0.030	1.2 93	1.30 5	1.3	1. 3 9 5	1.40	0.078	1.448	13.61	5900	2 5	3	50	1 3 3 0	1 1 2 0
1.40± 0.030		1.40 5	1.4	1. 4 9 5	1.50 7	0.078	1.548	11.70	5900	2 5	3	46	1 3 3 0	1 1 2 0
1.50± 0.030		1.50 5	1.5	1. 5 9	1.61	0.082	1.654	10.16	5900	2 5	3	46	1 4 3 0	1 2 2 0
1.60± 0.030		1.60 5	1.6 87	1. 6 9	1.71	0.082	1.754	8.906	5900	2 5	3	42	1 4 3 0	1 2 2 0
1.70± 0.030	1	1.70	1.7	1. 8 0 1	1.81	0.084	1.856	7.871	6300	2 5	3		1 5 3 0	3
1.80± 0.030		1.80	1.8	1 1	1.91 3	0.084	1.956	7.007	6300	2 5	3		1 5 3 0	3
1.90± 0.030		1.90	1.9	1 1	2.01	0.088	2.062	6.278	6300	2 5	3		1 6 3 0	3
2.00± 0.030		2.00	2.0 93	1 1	2.11 7	0.088	2.162	5.656	6300	3	3		1 6 3 0	3
2.10± 0.030	1	2.10	2.1 95	1 1	2.22	0.090	2.266	5.123	6300	3	3 4		1 6 3 0	4
2.20± 0.030	1	2.20	2.2 97	1 1	2.32	0.092	2.368	4.662	6300	3	3 5		1 7 3 0	4 3

2.30± 0.030	2.30	2.3 97	2. 4 1 0	2.42	0.092	2.468	4.260	6300	1 1	3	3 5		 1 7 3 0	1 4 3 0
2.40± 0.030	2.40	2.5	2. 5 1 5	2.52 9	0.096	2.574	3.908	6300	1 1	3	3 5		 1 8 4 0	1 5 3 0
2.50± 0.030	2.50	2.6	2. 6 1 7	2.63	0.098	2.678	3.598	6300		3	3 5		 1 8 4 0	1 5 3 0
2.60± 0.030	2.60	2.7	2. 7 1 7	2.73	0.098	2.778	3.324	6300	1 1	3	3 5		 1 8 4 0	1 5 3 0
2.70± 0.030	2.70	2.8	2. 8 1 7	2.83	0.098	2.878	3.079	6300	1 1	3	3 5		 	
2.80± 0.030	2.80	2.9	2. 9 1 7	2.93	0.098	2.978	2.861	6300	1 1	3	3	-	 	
2.90± 0.030	2.90	3.0	3. 0 1 7	3.03	0.098	3.078	2.665	6300		3	3		 	
3.00± 0.030	3.00	3.1	3. 1 1 7	3.13	0.098	3.178	2.489	6300		3	3 6		 	
3.20± 0.030	3.20 4	3.3	3. 3 1 9	3.33 5	0.098	3.388	2.198	6300	1 1	3	3 6		 	

Pacific Electric Wire & Cable (Shenzhen) Co., Ltd.

sales09@pewsc.com

enamel-wire.com

No.9 Jin Long 4 Road Bao long Industrail Estate Longgang, Shenzhen, China